
Implementations of Dijkstra's AlgorithmBased on Multi-Level BucketsAndrew V. Goldberg �NEC Research Institute4 Independence WayPrinceton, NJ 08540avg@research.nj.nec.com Craig SilversteinComputer Science DepartmentStanford UniversityStanford, CA 94305csilvers@theory.stanford.eduNovember 1995AbstractA 2-level bucket data structure has been shown to perform well in a Dijkstra's algorithmimplementation [4, 5]. In this paper we study how the implementation performance dependson the number of bucket levels used. In particular we are interested in the best number oflevels to use in practice.
�Part of this work was done while the author was at Computer Science Department, Stanford University, andsupported in part by NSF Grant CCR-9307045.

1 IntroductionThe shortest paths problem is a fundamental network optimization problem. Algorithms for thisproblem have been studied for a long time. (See e.g. [2, 7, 8, 10, 14, 15, 16].)An important special case of the problem occurs when no arc length is negative. In this case,implementations of Dijkstra's algorithm [8] achieve the best time bounds. An implementationof [11] runs in O(m+ n logn) time. (Here n and m denote the number of nodes and arcs in thenetwork, respectively.) An improved time bound of O(m+n logn= log logn) [12] can be obtainedin a random access machine computation model that allows certain word operations. Under theassumption that arc lengths are integers in the interval [0; : : : ; C], C � 2, the implementation of[1] runs in O(m+ nplogC) time.In a recent computational study [4, 5], however, a 2-level bucket implementation of Dijk-stra's algorithm gave the best overall performance among the codes studied. In particular, theimplementation proved to be much more robust than the classical 1-level bucket implementation[7, 9, 18]. In this paper we study relative performance of the multi-level bucket implementationsof the algorithm. We conduct computational experiments and explain their results. Our studyleads to better understanding of the multi-level implementations and con�rms that the 1-levelimplementation is much less robust than the multi-level implementations. The 1-level imple-mentation should be used only on special problems, such as problems with small arc lengths.On the other hand, implementations using more than one level of buckets are robust, performingconsistently over a wide range of inputs and performing poorly only on tests speci�cally designedto be di�cult for a particular implementation.2 De�nitions and NotationThe input to the one-source shortest paths problem is hG; s; `i, where G = (V;E) is a directedgraph, ` :! R is a length function, and s 2 V is the source node. In this paper we assume thatthe length function is nonnegative and that all nodes in G are reachable from s. The goal is to�nd, for each node v 2 V , the shortest path from s to v. We denote jV j by n, jEj by m, andthe largest arc length by C.A shortest paths tree of G is a spanning tree rooted at s such that for any v 2 V , the reversalof the v to s path in the tree is a shortest path from s to v.1

3 Dijkstra's AlgorithmDijkstra's algorithm [8] for solving the shortest path problem with nonnegative length functionworks as follows. (See e.g. [6, 13, 17] for more detail.) For every node v, the algorithmmaintains a distance label d(v), parent �(v), and status S(v) 2 funreached; labeled; scannedg.These values are initially d(v) = 1, �(v) = nil, and S(v) = unreached for each node. Themethod starts by setting d(s) = 0 and S(s) = labeled.At each step, the algorithm selects a labeled node with the smallest distance label and appliesthe scan operation to it. If there are no labeled nodes, the algorithm terminates.The scan operation, applied to a labeled node v, examines arcs (v; w). If d(v) + `(v; w) <d(w), then d(w) is set to d(v)+ `(v;w), �(w) is set to v, and S(w) is set to labeled. S(v) is thenset to scanned.This algorithm terminates, giving both the shortest paths and their lengths:Theorem 3.1 If the length function is nonnegative and every node is reachable from s, Dijk-stra's algorithm scans each node exactly once and terminates with d giving the shortest pathdistances and � giving a shortest path tree.In addition, the algorithm examines each edge exactly once. The worst-case complexity ofDijkstra's algorithm depends on the method used to �nd the labeled node with the smallestdistance label. The implementation using Fibonacci heaps [11] runs in O(m+n logn) time. Theimplementation using R-heaps [1] runs in O(m+ nplogC) time.4 Multi-Level Bucket Implementation4.1 1-level Bucket ImplementationAnother way to implement Dijkstra's algorithm is by using the bucket data structure, proposedindependently by Dial [7], Wagner [18], and Dinitz [9]. This implementation maintains an arrayof buckets, with the i-th bucket containing all nodes v with d(v) = i. When a node's distancelabel changes, the node is removed from the bucket corresponding to its old distance label (ifthe label was �nite) and inserted into the bucket corresponding to the new one.The implementation maintains an index L. Initially, L = 0, and L has the property that allbuckets i < L are empty. If L is empty, it is incremented, otherwise the next node to be scannedis removed from bucket L. The following theorem follows easily from the observation that a2

bucket deletion or insertion takes constant time and at most nC buckets need to be examinedby the algorithm.Theorem 4.1 If the length function is nonnegative, the bucket-based implementation of Dijk-stra's algorithm runs in O(m+ nC) time.Although the algorithm, as stated, needs nC buckets, it can be easily modi�ed to use onlyC + 1. The key observation is that at most C + 1 consecutive buckets can be occupied at anygiven time, and we can \wrap around" when the end of the bucket array is reached.4.2 2-level Bucket ImplementationA 2-level bucket structure reduces the memory requirement even further and also improves thetime bound. The basic 2-level bucket implementation works as follows: there are pC + 1 top-level buckets, each of which contains pC + 1 bottom-level buckets. Each bottom-level bucketholds one distance label, as in the 1-level implementation, but each top-level bucket holds a rangeof pC + 1 distance labels, corresponding to the labels on the bottom-level buckets contained inthat top level bucket. We keep two indices, Ltop and Lbottom, to indicate our current position inthe data structure. When moving a node to a new location, we �nd �rst the appropriate top-levelbucket for that node and then the appropriate bottom-level bucket within that top-level bucket.The time and space savings come when we modify the basic algorithm to keep only oneset of bottom-level buckets, the set associated with the current top-level bucket at index Ltop.When moving a node, we put it into the appropriate top-level bucket. We only move it into abottom-level bucket if the node is in the top-level bucket at Ltop. When Ltop changes (because allthe bottom-level buckets become empty), we must expand the bucket at the new Ltop, putting allthe nodes in bucket Ltop into appropriate bottom-level buckets. We can destroy the bottom-levelbuckets for the bucket at the old Ltop, since they are now all empty, and reuse the space for thenew active bucket.If there are many empty buckets, the 2-level implementation saves time as well: if one of thetop-level buckets is empty, we move to the next without the need to expand, thereby skippingpC + 1 distance values at once.It is clear from this description that the total space requirement is 2pC + 1 buckets. Ex-pansion takes constant time per node, and we expand each node at most once. In addition, eachnode can make us examine at most pC + 1 bottom-level buckets; we may also have to examinepC + 1 top level buckets. Thus the time is in O(m+ n(1 +pC)).3

4.3 k-level Bucket ImplementationThe scheme for 2-level buckets can easily be extended to allow for more levels. Formally, supposewe have k bucket levels, with p = dC1=ke buckets at each level. The lowest bucket level is 0, andk�1 is the highest. In addition, the buckets in each level are numbered from 0 to p�1. Considerlevel i. Associated with this level are the base distance Bi and the currently active bucket Li.Associated with bucket j at level i is the interval [Bi + jpi; Bi+ (j + 1)pi� 1], representing thepossible distance labels of nodes in that bucket. The base distances and indices are such thatBk�1 = 0 mod pk and Bi�1 = Bi + Lipi.The algorithm repeatedly removes a node from the active bucket at the lowest level andupdates the distances of all its neighbors. If the distance of a node decreases, we try to replaceit at the lowest level. If its distance label does not �t in any interval of the lowest-level buckets,we move up a level and try to �t the node in a higher level bucket, otherwise we put the nodein the bucket with the �tting interval.Once the bottom-level bucket at L0 becomes empty, we update L0 by scanning for the nextnon-empty bucket at the lowest level. If there is none, we go up a level and repeat. Suppose we�nd a non-empty bucket on level i. We update Li and expand the non-empty bucket. We setLi�1 to be the index of the �rst non-empty bucket among the expanded buckets. If necessary,we expand Li�1 as well, until we have a new, non-empty active bucket at the bottom level. Thealgorithm then continues.The space and time bounds on the k-level implementation are generalizations of those for the2-level case.Theorem 4.2 [5] If the length function is nonnegative, the k-level implementation runs inO(m+ n(k + C1=k)) time and uses �(kC1=k) buckets.Although the multi-level implementation does not match the best time bounds known forthis problem, the time bound is close, and its performance in practice is competitive with otherimplementations.4.4 HeuristicsOur implementation uses two heuristics to improve practical performance. These heuristics havelow overhead: They never decrease performance by much, and they often give signi�cant timesavings. 4

The �rst heuristic, which we call the minimum length heuristic, is due to Dinitz [9]. Let Mbe is the smallest nonzero arc cost (we assume that at least one arc length is positive). Then thebucket-based implementations remain correct if the i-th lowest level bucket contains nodes withdistance labels in the range [iM; : : :; (i+ 1)M). This heuristic reduces the number of bucketsused.The minimum length heuristic allows to use bucket-based algorithms on problems withnonnegative real-valued length functions. This can be achieved by dividing all arc lengths byM . In this case, C is de�ned as the ratio between the biggest and the smallest positive lengths.The second heuristic, which we call the end cuto� heuristic, is due to Cherkassky [5]. Thisheuristic keeps track of the �rst and the last nonempty bucket at each level, which allows thealgorithm to skip empty buckets at the ends of the bucket array. The heuristic is more helpfulthan it may look at �rst. In particular, consider the 1-level implementation and recall that thisimplementation uses C + 1 buckets and \wraps around" when the end of the bucket array isreached. Suppose the input graph is a path from s, with each arc length equal to C. Withoutthe end cuto� heuristic, the implementation takes �(nC) time. With the heuristic, it takes only�(n) time.4.5 Bucket OverheadWe study how the implementation performance depends on the number of bucket levels. Tointerpret our experimental results, it is important to understand the overhead of maintainingand searching the buckets. The major overhead sources are as follows. (We count the workof removing a node from a bucket to be scanned as a part of scanning the node and not asoverhead.)1. Examining empty buckets: the overhead is proportional to the total number of emptybuckets examined. An empty bucket operation consists of examining a bucket which turnsout to be empty.2. Expanding buckets: the overhead is proportional to the total number of nodes movedto a lower level during bucket expansions. An expansion operation consists of one suchnode move.3. Node moves due to distance label decreases: the overhead is proportional to thetotal number of times a node needs to be moved to a di�erent bucket when its distancelabel decreases. A move operation consists of such a node move.5

5 Experimental SetupOur experiments were conducted on a SUN Sparc-10 workstation model 41 with a 40MHZprocessor running SUN Unix version 4.1.3. The workstation had 160 Meg. memory and allproblem instances �t into the memory. Our code was written in C++ and compiled with theSUN gcc compiler version 2.6.3 using the �O2 optimization option.We made an e�ort to make our code e�cient. In particular, we set the bucket array sizesto be powers of two. This allows us to use word shift operations when computing bucket arrayindices.We report experimental results obtained on four types of graphs and on four levels of buckets.Two of the graph types were chosen to exhibit the properties of the algorithm at two extremes:one where the paths from the start node to other nodes tend to be order �(n), and one in whichthe path lengths are order �(1). The third graph type is random graphs. The fourth type ofgraphs is meant to be easy or hard for a speci�c implementation with a speci�c number of bucketlevels. We experimented with several additional problem families. However, these additionalresults were consistent with those we report here and do not add new insight. The bucket levelsranged from 1 to 4; the distinction between the performance of a 3-level implementation and a4-level implementation is so slight that any deeper nesting of buckets is unlikely to signi�cantlyimprove performance.To put performance of the bucket implementations in perspective, we also give data for ak-ary heap implementation of Dijkstra's algorithmwith k = 4. (We picked k = 4 so we could useword shift operations.) The k-ary heap data is useful, for example, to gauge relative di�erencein the multi-level bucket implementation performance, or to see if very large costs are as badfor the multi-level bucket implementations as the worst-case analysis suggests. We would like topoint out that the experiments described in this paper are designed to compare the multi-levelbucket implementations to each other, not to the k-ary heap implementation. A comparison ofa 2-level bucket implementation to a k-ary heap implementation appears in [5], and our data isconsistent with that of [5].5.1 The Graph TypesTwo types of graphs we explored were grids produced using the GRIDGEN generator [5]. Thesegraphs can be characterized by a length x and width y. The graph is formed by constructing xlayers, each of which is a path of length y. We order the layers, as well as the nodes within each6

Name type description salient featurelong grid grid 16 nodes high path lengths are �(n)n=16 nodes longwide grid grid n=16 nodes high path lengths are �(1)16 nodes longrandom random degree 4 path lengths are �(logn)hard two paths d(S; path 1) = 0 nodes occupy �rst and lastd(S; path 2) = p� 1 buckets in bottom level binseasy two paths d(S; path 1) = 0 nodes occupy �rst and secondd(S; path 2) = 1 buckets in bottom level binsTable 1: The graph types used in our experiments. p is the number of buckets at each level.layer, and we connect each node to its corresponding node on adjacent layers. All the nodes onthe �rst layer are connected to the source.The �rst type of graph we used, the long grid, has a constant width | 16 nodes in ourtests. We used graphs of di�erent lengths, ranging from 512 to 32768 nodes. The arcs hadlengths chosen independently and uniformly at random in the range from 1 to C. C varied from1 to 100; 000; 000.The second type of graph we used was the wide grid type. These graphs have lengthlimited to 16 layers, while the width can vary from 512 to 32768 nodes. C was the same as forlong grids.The third type of graphs includes random graphs with uniform arc length distribution. Arandom graph with n nodes has 4n arcs.The fourth type of graphs includes both hard and easy graphs. The input to these graphsis the number of nodes, the desired number of levels k and a maximum arc length C. From C itis possible to calculate p, the number of buckets in each level assuming the implementation hask levels. Both graphs consist of two paths connected to the source. The nodes in each path areat distance p from each other. The distance from the source to path 1 is 0; nodes in this pathwill occupy the �rst bucket of bottom level bins. The distance from the source to path 2 is p� 1for hard graphs | making these nodes occupy the last bucket in each bottom-level bin | and1 for easy graphs |making the nodes occupy the second bucket in each bottom-level bin. Inaddition, the source is connected to the last node on the �rst path by an arc of length 1, and tothe last node of the second path by an arc of length C.7

Graph type Graph family Range of values Other valueslong grid Modifying C C = 1 to 1; 000; 000 x = 8192Modifying x x = 512 to 32768 C = 16C = 10; 000C = 100; 000; 000Modifying C and x x = 512 to 32768 C = xC = x=10wide grid Modifying C C = 1 to 1; 000; 000 y = 8192Modifying y y = 512 to 32768 C = 16C = 10; 000C = 100; 000; 000Modifying C and y y = 512 to 32768 C = yC = y=10random graph Modifying C C = 1 to 1; 000; 000 n = 131072Modifying n n = 8; 192 to 524; 288 C = 16C = 10; 000C = 100; 000; 000Modifying C and n n = 8; 192 to 524; 288 C = nC = n=10easy, hard Modifying C C = 100 to 10; 000; 000 n = 131072; p= 2n = 131072; p= 3Table 2: The problem families used in our experiments. C is the maximum arc length; x andy the length and width, respectively, of grid graphs; and p the number of levels for which easyand hard graphs are meant to be easy or hard.A summary of our graph types appears in Table 1.5.2 Problem FamiliesFor each graph type we examined how the relative performance of the implementations changedas we increased various parameters. Each type of modi�cation constitutes a problem family.The families are summarized in Table 2. In general, each family is constructed by varying oneparameter while holding the others constant. Di�erent families can vary the same parameter,using di�erent constant values. For instance, one problem family modi�es x as C = 16, anothermodi�es x as C = 10; 000, and a third modi�es x as C = 100; 000; 000.8

6 Data InterpretationWe use the overhead operation counts, from Section 4.5, to explain the data. The work performedactually scanning nodes is the same for all implementations; variations in overall cost come fromdi�ering amounts of overhead. Since each node is scanned exactly once, it is often helpful tolook at the number of overhead operations per node.Relative cost of the overhead operations is important. The work involved in an empty bucketoperation is much less than the work involved in an expansion or a move operation. A moveis about twice as expensive as an expansion, since expansion merely involves insertion, whilemoving involves deletion as well. Scanning a node involves removing it from an appropriatebucket, examining its outgoing arcs, and potentially changing the distance labels and parentpointers of its neighbors. Even though all networks we study have small degree, scanning a nodetakes more time than an expansion or a move operation and much more time than an emptybucket operation.The cost of insertion and deletion, although bounded by a constant, is not uniform. Insertinginto an empty bucket is about half as expensive as inserting into a non-empty bucket, due tothe cost of updating the doubly-linked list. Likewise, deleting the last node from a bucket ischeaper than deleting a penultimate, or earlier, node. Usually it is not necessary to distinguishbetween the two types of insertions and deletions | we do not do so | but we will refer to thisfact when it is needed to explain the data.The number of overhead operations has a signi�cant e�ect on the running time only if thereis signi�cantly more than one overhead operation per node.Often, the relative implementation performance is determined by the number of empty bucketoperations. The advantage of multiple bucket levels is that after examining an empty bucketwe may increase L by a large amount. This is a game of diminishing returns, however, sincethe rate of decrease of empty bucket operations is less than the rate of increase of expansionoperations.Several key statistics relate to the distribution of path lengths. We de�ne the depth D of anetwork to be the highest distance from the source to a node reachable from the source. Networkdepth is an important parameter in understanding performance of our implementations. Withoutthe minimum length and end cuto� heuristics, the one level implementation examines exactlyD + 1 buckets until there are no labeled nodes. Even with the heuristics and multiple levels,the number of empty operations usually grows as D grows. Depth can often be used to explain9

performance.The variance of the shortest path lengths is also an important statistic. If the distributionof shortest path lengths is highly non-uniform, there will be large stretches of empty bucketswhich multi-level implementations can quickly skip over.Equally crucial is the density of the distribution: If there are few empty buckets, the overheadof bucket expansion may well be higher than the overhead of examining empty buckets, favoringsmall numbers of bucket levels. Distributions for grids are fairly uniform, and vary in densityas C varies. D=n gives a fairly good estimate of distribution density for shortest path lengths.7 Experimental ResultsIn this section we present our experimental results. In all the tables, k denotes the number ofbucket levels.As we have mentioned above, the k-ary heap data is given mostly for calibration purposes.This data has a succinct interpretation, however, which we give in Section 7.5.7.1 Varying Grid SizeTables 3, 4, and 5 show the relative performance of our implementations on long grids as thesize of the grid changes. The �rst table concerns long-small networks with C = 16, thesecond long-medium networks with C = 10; 000, and the third long-large networks withC = 100; 000; 000.For long-small networks,D is comparable to n. The number of empty bucket operations issmall and multiple bucket levels do not help. On these networks, performance of all four bucketimplementations is very similar. The 1-level implementation the fastest by a small margin. The3- and 4-level implementations perform almost identically and are the slowest by a small margin.The relative performance is consistent with the operation counts. The number of emptybucket operations and the number of move operations is similar for all implementations. Whilethe 1-level implementation does no expansion operations, the other bucket implementations doless than one expansion operation per node, and the relative running time di�erences are small.For long-medium networks, D is much greater than n. The 1-level implementation isslower than the other bucket implementations because it performs many more empty bucketoperations | about two hundred per node. The running time of the 1-level implementation isdominated by the time spend examining empty buckets. The number of move operations for all10

0.01

0.1

1

10

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of slong_small data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.07 s 0.13 s 0.27 s 0.54 s 1.09 s 2.16 s 4.31 sempty 175 324 659 1296 2566 5086 10308expanded 0 0 0 0 0 0 0moved 10346 20728 41475 82950 165726 331441 6631072 time 0.08 s 0.15 s 0.30 s 0.61 s 1.22 s 2.43 s 4.84 sempty 135 258 522 1033 2024 4041 8181expanded 5626 11259 22544 45151 90331 180596 361254moved 9607 19213 38433 76835 153577 307080 6146223 time 0.08 s 0.17 s 0.35 s 0.68 s 1.36 s 2.71 s 5.44 sempty 88 163 335 650 1271 2521 5155expanded 10646 21329 42772 85533 171125 342183 684440moved 9475 18973 37937 75885 151681 303295 6068004 time 0.08 s 0.17 s 0.35 s 0.69 s 1.39 s 2.77 s 5.53 sempty 88 163 335 650 1271 2521 5155expanded 11582 23198 46515 93040 186126 372184 744542moved 9475 18973 37937 75885 151681 303295 606800h time 0.08 s 0.17 s 0.34 s 0.68 s 1.98 s 2.74 s 5.46 smoved 10342 20726 41476 82936 165712 331496 663082Table 3: The performance on long grids as the grid length increases, for C = 16.11

0.01

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of slong_medium data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.46 s 1.03 s 2.04 s 4.21 s 8.07 s 16.13 s 32.29 sempty 1469907 3251249 6519227 12993783 25974606 51938208 104134091expanded 0 0 0 0 0 0 0moved 10670 21367 42782 85485 170925 341972 6837852 time 0.11 s 0.23 s 0.45 s 0.90 s 1.80 s 3.59 s 7.19 sempty 92143 171430 344659 684436 1377759 2747626 5506539expanded 8068 16185 32374 64753 129491 259030 517975moved 10611 21274 42606 85117 170201 340490 6808593 time 0.12 s 0.23 s 0.48 s 0.95 s 1.89 s 3.78 s 7.55 sempty 30448 63751 126799 253677 505943 1013106 2025712expanded 15449 31205 62428 124910 249828 499598 999259moved 10302 20700 41504 82864 165671 331377 6626864 time 0.13 s 0.25 s 0.52 s 1.03 s 2.05 s 4.10 s 8.18 sempty 15211 29968 59331 118878 237499 475558 950782expanded 21472 43698 87489 174962 349963 699931 1399914moved 9829 19660 39354 78627 157385 314680 629336h time 0.08 s 0.17 s 0.35 s 0.69 s 1.39 s 2.75 s 5.51 smoved 10669 21367 42782 85484 170922 341972 683787Table 4: The performance on long grids as the grid length increases, for C = 10; 000.12

0.01

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of slong_large data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 3.46 s 8.63 s 22.96 s 48.80 s 154.85 s 1575.18 s 4711.51 sempty 11954646 30067065 82573330 177903397 557755127 2913256282 3391076670expanded 0 0 0 0 0 0 0moved 10670 21368 42783 85490 170931 341988 6840132 time 0.13 s 0.27 s 0.82 s 1.11 s 2.26 s 5.33 s 13.63 sempty 119833 302413 594727 1321875 2641065 7073796 21891135expanded 8137 16292 32639 65271 130678 261726 523819moved 10646 21328 42724 85370 170754 341792 6835953 time 0.12 s 0.27 s 0.54 s 1.10 s 2.25 s 5.13 s 11.18 sempty 51620 119716 256973 516915 1213987 4117328 10407425expanded 15892 32059 64261 129015 258528 518070 1040303moved 10462 21043 42221 84565 169274 339129 6799664 time 0.14 s 0.28 s 0.55 s 1.10 s 2.25 s 4.76 s 10.11 sempty 19402 42993 95630 203827 445451 1261218 4153649expanded 22817 46097 92270 182036 372381 766285 1533172moved 10062 20246 40572 80193 162887 333387 666659h time 0.08 s 0.17 s 0.35 s 0.70 s 1.38 s 2.75 s 5.53 smoved 10670 21368 42783 85490 170931 341989 683818Table 5: The performance on long grids as the grid length increases, for C = 100; 000; 000.13

implementations is a little over one per node and has little e�ect on the relative performance.For 2-, 3-, and 4-level implementations, empty buckets do not provide the dominant cost.While the 1-level implementation examines 50-100 times as many empty buckets as the 2-levelimplementation, the 2-level implementation examines only 3-5 times as many empty buckets asthe 4-level implementation. The cost of expansion becomes dominant, so the 2-level implement-ation is the fastest, followed by the 3- and 4-level implementations.For long-large networks, D is huge compared to n. We would thus expect the samebehavior as for long-medium networks: 1-level implementations su�er due to the huge numberof empty buckets, while multi-level implementations can skip over the huge swaths of emptybuckets at an increase in expansion operations. And indeed, the 1-level implementation performspoorly. Implementations with several bucket levels perform similarly to each other for small n.For large n, the 4-level implementation is somewhat better.Tables 6, 7, and 8 show the relative performance of the implementations on the wide gridfamilies wide-small, wide-medium, and wide-large. Once again, for these families C = 16,C = 10; 000, and C = 100; 000; 000, respectively.For wide-small family, D is bounded by 256. On this family, the number of empty bucketoperations is very small for all implementations and does not grow much as the problem sizegrows. The number of move operations is very similar for all bucket implementations. Thenumber of expansion operations grows with the number of levels and accounts for the di�erencein performance. However, all implementations do less than one expansion operation per node,and the performance di�erence is relatively small.For wide-medium networks,D is bounded by 160; 000. The number of empty bucket oper-ations is well below the number of nodes and grows slower. The number of move operations issimilar for all implementations. The number of expansion operations grows with the number ofbucket levels and explains the worse performance of implementations with more bucket levels.However, even for the 4-level implementation, the number of these operations is only about twoper node, and the performance di�erence is small.For wide-large networks, D is bounded by 160; 000; 000. For small values of n, when Dis large compared to n, multi-bucket implementations with more bucket levels perform better.As n grows, so does the advantage of the 4-level implementation.The erratic performance curve of the 1-level implementation is due to the end cuto� heuristic.The number of empty buckets seen in the 1-level case increases �tfully. For n = 524289, theheuristic is so successful that the 1-level implementation has less empty buckets than the 2- and14

0.01

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of swide_small data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.07 s 0.17 s 0.39 s 0.86 s 1.97 s 4.22 s 8.50 sempty 4 5 3 4 4 4 4expanded 0 0 0 0 0 0 0moved 10403 20774 41487 83002 166159 330764 6615442 time 0.08 s 0.18 s 0.43 s 0.93 s 2.12 s 4.74 s 9.53 sempty 3 3 2 1 2 1 1expanded 5512 11029 22097 44160 88293 177263 354599moved 9643 19206 38431 76896 153908 306714 6134253 time 0.08 s 0.22 s 0.49 s 1.54 s 2.33 s 5.14 s 10.65 sempty 2 1 1 1 0 0 1expanded 10341 20725 41583 83097 166210 333259 666781moved 9545 18996 38010 76032 152208 303497 6068844 time 0.10 s 0.21 s 0.47 s 1.04 s 2.22 s 4.81 s 10.05 sempty 2 1 1 1 0 0 1expanded 10975 21985 44105 88136 176287 353472 707384moved 9545 18996 38010 76032 152208 303497 606884h time 0.13 s 0.31 s 0.74 s 1.62 s 3.65 s 8.01 s 17.37 smoved 10410 20779 41503 83028 166165 330765 661446Table 6: The performance on wide grids as the grid width increases, for C = 16.15

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of swide_medium data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.11 s 0.22 s 0.45 s 1.20 s 2.02 s 4.52 s 9.88 sempty 57518 61990 49721 35902 23613 16827 14476expanded 0 0 0 0 0 0 0moved 10744 21489 42888 85789 171687 341477 6828412 time 0.12 s 0.22 s 0.49 s 1.07 s 2.30 s 5.02 s 10.66 sempty 42525 45971 39080 26990 14938 9145 6749expanded 8065 16174 32350 64734 129455 258885 517777moved 10691 21399 42698 85406 170927 339971 6799173 time 0.12 s 0.25 s 0.53 s 1.14 s 2.49 s 5.42 s 11.50 sempty 25049 33588 31450 22276 11683 6427 4360expanded 15410 31128 62317 124658 249285 498739 997542moved 10373 20814 41537 83116 166301 330927 6618074 time 0.13 s 0.27 s 0.58 s 1.23 s 2.67 s 5.73 s 12.14 sempty 13299 22504 24743 18499 9580 4801 3170expanded 21297 43414 86899 173850 347671 696046 1391877moved 9907 19757 39423 78923 157931 314516 629090h time 0.14 s 0.35 s 0.88 s 2.07 s 5.11 s 12.14 s 27.84 smoved 10744 21488 42887 85789 171689 341476 682841Table 7: The performance on wide grids as the grid width increases, for C = 10; 000.16

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of swide_large data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.28 s 0.44 s 0.78 s 1.32 s 2.59 s 7.13 s 13.13 sempty 524049 697832 919232 979496 1539567 8031971 11915214expanded 0 0 0 0 0 0 0moved 10744 21488 42889 85794 171696 341491 6827532 time 0.16 s 0.32 s 0.66 s 1.26 s 2.65 s 6.62 s 23.47 sempty 254271 439313 667675 769532 1241494 6213300 37317527expanded 8135 16285 32628 65255 130675 261716 523803moved 10722 21446 42827 85672 171505 341282 6826513 time 0.13 s 0.27 s 0.60 s 1.36 s 2.77 s 6.41 s 14.76 sempty 43746 110234 243215 423863 835803 3507279 12187754expanded 15858 32019 64217 128902 258380 517853 1040000moved 10533 21168 42306 84834 169970 338579 6790554 time 0.14 s 0.30 s 0.63 s 1.34 s 2.89 s 6.34 s 13.70 sempty 18755 41631 103074 239710 446362 1046830 3341629expanded 22715 45971 92010 181403 371373 765540 1531673moved 10114 20346 40569 80405 163378 332856 665754h time 0.22 s 0.34 s 0.83 s 2.22 s 5.09 s 12.13 s 28.56 smoved 10744 21488 42889 85795 171697 341492 682885Table 8: The performance on wide grids as the grid width increases, for C = 100; 000; 000.17

3-level implementations. This is quite unusual.Tables 9, 10, and 11 show the relative performance of di�erent bucket level implementationson random graphs. The �rst table concerns random-small networks with C = 16, the secondrandom-medium networks with C = 10; 000, and the third random-large networks withC = 100; 000; 000.For these networks, the expected value of D is proportional to C logn, and the path lengthdistribution is fairly uniform. logn is small enough that random grids perform similarly to widegrids, in which D is proportional to C.A useful insight can be gained comparing Tables 3 and 6 for large problem sizes. Thenumber of empty bucket operations is much higher for the long grids than the wide grids, andthe numbers are similar for the other overhead operations. Yet, except for the 1-level case,the running times for long grids are better. The reason for this is that for long grids, bucketsalmost always contain at most one element, while wide grids usually have many elements in onebucket. As we observed in Section 6, linked list operations are faster if the former case. Thelist operations are used by scanning, expansion, and move operations, which on this family aremuch more frequent than the empty bucket operations. This explains the data.Similar phenomena occurs in Tables 4 and 7.7.2 Varying the Maximum Arc LengthTables 12, 13, and 14 show the relative performance of the implementations as the maximum arclength C changes. This is important since theoretical bounds depend on C. The tables showresults for grids with 131; 073 nodes. The value of C grows starting from 1 and increasing by afactor of 10 at each step. Again, the wide grid and random graph families give similar results.The 1-level implementation performs the best for small C, but its performance degradesquickly as C increases. This is because, as C grows, the cost of empty operations becausedominant. For the long-len family, there is a clear crossover. For the wide-len and random-len families, the data suggests crossovers for larger values of C, and additional experimentscon�rm this.Consider the long-len family. When the number of empty bucket operations is smallcompared to the number of nodes, the 1-level implementation is a little faster than the multi-level implementations. For large C, the number of empty bucket operations increases, and themulti-bucket implementations are faster.For the wide-len family, D is not much bigger than n unless C is very large. The number18

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of rand_small data set

1 level
2 level
3 level
4 level

heap

k nodes 8192 16384 32768 65536 131072 262144 5242881 time 0.10 s 0.26 s 0.56 s 1.20 s 2.46 s 5.02 s 10.25 sempty 14 11 11 9 8 8 12expanded 0 0 0 0 0 0 0moved 10510 20967 42050 84111 168108 336448 6730772 time 0.12 s 0.28 s 0.60 s 1.28 s 2.65 s 5.42 s 11.14 sempty 7 8 7 6 5 5 6expanded 5591 11208 22430 44820 89613 179217 358153moved 9711 19364 38839 77658 155252 310848 6213933 time 0.13 s 0.30 s 0.68 s 1.41 s 2.91 s 5.93 s 13.24 sempty 2 3 2 4 3 1 4expanded 10634 21457 43642 84654 170499 329260 685554moved 9606 19069 38141 76958 153417 308969 6125104 time 0.12 s 0.30 s 0.67 s 1.45 s 2.96 s 6.09 s 12.87 sempty 2 3 2 3 3 1 4expanded 10736 21827 44707 90755 184001 371878 876093moved 9606 19069 38141 76958 153417 308969 612510h time 0.18 s 0.46 s 1.06 s 2.28 s 4.89 s 10.25 s 21.46 smoved 10513 20960 42057 84088 168077 336425 673051Table 9: The performance on random graphs as n increases, for C = 16.19

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of rand_medium data set

1 level
2 level
3 level
4 level

heap

k nodes 8192 16384 32768 65536 131072 262144 5242881 time 0.13 s 0.27 s 0.62 s 1.38 s 2.89 s 6.12 s 12.56 sempty 40163 37693 36205 35860 33829 33747 38580expanded 0 0 0 0 0 0 0moved 10941 21879 43880 87646 175335 350745 7017202 time 0.12 s 0.39 s 0.69 s 1.48 s 3.12 s 6.50 s 13.39 sempty 16447 15860 15143 14469 14127 13937 14252expanded 8084 16172 32332 64671 129356 258761 517449moved 10883 21765 43654 87213 174469 348974 6981693 time 0.13 s 0.33 s 0.73 s 1.57 s 3.32 s 6.86 s 14.15 sempty 9877 9630 8931 8361 8187 7985 8062expanded 15552 31129 62223 124465 248896 497852 995570moved 10568 21095 42363 84560 169185 338459 6769804 time 0.14 s 0.35 s 0.78 s 1.66 s 3.47 s 7.24 s 14.90 sempty 6754 6780 6254 5671 5536 5453 5385expanded 21751 43595 87115 174153 348326 696759 1392883moved 10013 19985 40084 80069 160259 320395 641105h time 0.20 s 0.55 s 1.39 s 3.25 s 7.30 s 16.29 s 35.60 smoved 10941 21878 43881 87647 175336 350747 701717Table 10: The performance on random graphs as n increases, for C = 10; 000.20

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of rand_large data set

1 level
2 level
3 level
4 level

heap

k nodes 8192 16384 32768 65536 131072 262144 5242881 time 0.24 s 0.50 s 0.90 s 1.92 s 5.89 s 8.27 s 16.52 sempty 324376 576850 784427 1720162 8848367 7743432 15031125expanded 0 0 0 0 0 0 0moved 10941 21882 43882 87657 175355 350664 7015512 time 0.16 s 0.36 s 0.76 s 1.69 s 3.99 s 9.95 s 16.98 sempty 111362 227866 320028 721023 3528171 13295674 13223005expanded 8138 16309 32638 65331 130888 261886 523892moved 10914 21848 43819 87554 175267 350632 7015723 time 0.15 s 0.35 s 0.83 s 1.69 s 3.82 s 8.22 s 16.19 sempty 43605 95448 153918 371270 1785388 4788428 6513717expanded 15874 32079 64543 129116 258766 519199 1040105moved 10700 21539 43391 86664 173649 348194 6974494 time 0.17 s 0.38 s 0.83 s 1.76 s 3.80 s 7.92 s 16.38 sempty 16138 51614 98956 176341 641185 1430850 2874672expanded 23617 45975 91525 187079 384445 770991 1544200moved 10526 20627 41155 83678 171155 343289 687877h time 0.22 s 0.57 s 1.40 s 3.28 s 7.34 s 16.75 s 37.34 smoved 10941 21882 43883 87658 175355 350770 701767Table 11: The performance on random graphs as n increases, for C = 100; 000; 000.21

1

10

100

1000

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

t
i
m
e

MaxArcLen

Comparison of slong_len data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 1 10 100 1000 10000 100000 1000000 9999994 999999371 time 1.02 s 1.07 s 1.12 s 1.70 s 8.06 s 64.10 s 140.62 s 149.37 s 154.92 sempty 0 344 162140 2459807 25974606 233725061 516226971 530194171 557755127expanded 0 0 0 0 0 0 0 0 0moved 131072 162913 170043 170841 170925 170931 170931 170930 1709312 time 1.11 s 1.24 s 1.31 s 1.50 s 1.79 s 2.18 s 2.20 s 2.37 s 2.26 sempty 0 186 113303 488015 1377759 2637060 2351276 3214423 2641065expanded 65536 101610 114198 127298 129491 130433 130711 130584 130678moved 131072 153029 162976 169090 170201 170639 170769 170708 1707543 time 1.17 s 1.30 s 1.46 s 1.67 s 1.90 s 2.17 s 2.15 s 2.35 s 2.25 sempty 0 186 67042 210032 505943 1109200 912364 1548074 1213987expanded 98304 140900 199299 233169 249828 256194 259315 257048 258528moved 131072 150271 155013 160228 165671 168227 169631 168612 1692744 time 1.20 s 1.58 s 1.73 s 1.90 s 2.05 s 2.16 s 2.24 s 2.24 s 2.23 sempty 0 0 24133 111558 237499 366030 439919 446718 445451expanded 114688 295963 318137 337675 349963 363434 372394 370211 372381moved 131072 147261 153579 155821 157385 160343 162777 162417 162887h time 1.30 s 1.36 s 1.38 s 1.37 s 1.38 s 1.39 s 1.37 s 1.38 s 1.38 smoved 131072 162877 170055 170842 170922 170930 170931 170931 170931Table 12: The performance on long grids as the maximum arc length increases. n = 131072.22

1

10

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

t
i
m
e

MaxArcLen

Comparison of swide_len data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 1 10 100 1000 10000 100000 1000000 9999994 999999371 time 1.57 s 1.77 s 1.96 s 2.07 s 2.00 s 2.21 s 2.53 s 2.58 s 2.60 sempty 0 2 44 974 23613 581673 1424789 1451039 1539567expanded 0 0 0 0 0 0 0 0 0moved 131072 163173 170785 171605 171687 171696 171697 171697 1716962 time 1.63 s 1.99 s 2.26 s 2.26 s 2.28 s 2.40 s 2.59 s 2.61 s 2.60 sempty 0 0 19 375 14938 479411 1133298 1186518 1241494expanded 65536 100158 113393 127149 129455 130404 130704 130562 130675moved 131072 153220 163569 169800 170927 171392 171514 171457 1715053 time 1.68 s 2.08 s 2.29 s 2.38 s 2.51 s 2.68 s 2.76 s 2.78 s 2.74 sempty 0 0 11 248 11683 373940 719023 853078 835803expanded 98304 135691 195716 231747 249285 255843 259176 256798 258380moved 131072 150718 155661 160711 166301 168958 170357 169320 1699704 time 1.85 s 2.53 s 2.61 s 2.66 s 2.66 s 2.80 s 2.90 s 2.88 s 2.90 sempty 0 0 5 154 9580 287454 450945 427626 446362expanded 114688 290817 313946 334568 347671 361765 371385 368992 371373moved 131072 147703 154192 156160 157931 160768 163348 162963 163378h time 2.70 s 3.43 s 4.25 s 4.82 s 5.00 s 5.01 s 5.09 s 5.05 s 4.99 smoved 131072 163181 170796 171600 171689 171696 171697 171697 171697Table 13: The performance on wide grids as the maximum arc length increases. n = 131072.23

1

10

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

t
i
m
e

MaxArcLen

Comparison of rand_len data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 1 10 100 1000 10000 100000 1000000 9999998 999999731 time 2.18 s 2.41 s 2.65 s 2.79 s 2.91 s 2.91 s 4.55 s 5.40 s 5.88 sempty 0 3 115 2186 33829 459628 3440649 7113429 8848367expanded 0 0 0 0 0 0 0 0 0moved 131071 164293 174122 175240 175335 175354 175355 175355 1753552 time 2.41 s 2.67 s 2.80 s 3.04 s 3.13 s 3.11 s 3.48 s 3.87 s 4.02 sempty 0 2 52 812 14127 224907 1496248 2948066 3528171expanded 63492 100962 113140 126996 129356 130357 130844 130836 130888moved 131071 153960 165961 173164 174469 175016 175244 175242 1752673 time 2.51 s 2.83 s 3.89 s 3.18 s 3.32 s 3.41 s 3.66 s 3.81 s 3.87 sempty 0 2 32 543 8187 129347 828194 1569370 1785388expanded 99713 146210 197705 231714 248896 256684 259070 257949 258766moved 131071 151261 157817 163191 169185 172669 173811 173252 1736494 time 2.63 s 3.33 s 3.43 s 3.44 s 3.49 s 3.57 s 3.74 s 3.80 s 3.82 sempty 0 0 14 317 5536 98881 383948 624711 641185expanded 135537 294636 315855 335732 348326 356897 384596 382361 384445moved 131071 148090 156053 158628 160259 161839 171309 170225 171155h time 3.43 s 4.61 s 5.89 s 6.81 s 7.31 s 7.47 s 7.46 s 7.45 s 7.46 smoved 131071 164270 174121 175242 175336 175354 175355 175355 175355Table 14: The performance on randomgraphs as the maximum arc length increases. n = 131072.24

of empty bucket operations grows with C but remains below the number of nodes for C � 1; 000.Although the number of empty bucket operations decreases with the number of bucket levels,this dependence is much less than for the long-len family.The rand-len family is similar to the wide-len family.Comparison to the heap implementation shows that, except for the 1-level implementation,the bucket implementations are not much more sensitive to C.7.3 Varying Grid Size and Maximum Arc LengthA natural experiment is to make C proportional to n. Tables 15 and 16 show data for long-land long-l10 families of long grids. For the former family, C = x (the length of the grid). Inthe second table, C = x=10. Tables 17 and 18 show equivalent results for wide-l and wide-10lfamilies, and tables 19 and 20 show results for the rand-l and rand-10l families.For long grids, the expected value of D grows as n2. The 1-level bucket implementation isthe worst by a large margin. The 2-, 3-, and 4-level implementations perform similarly. Forthe 1-level implementation, the growth in the number of empty bucket operations is close toquadratic, as the theory suggests. For large values of n, these operations dominate the runningtime. For multi-level implementations, the growth rate is much slower (although superlinear). Asusual, more levels decrease the number of empty bucket operations but increase the number ofexpansion operations. However, the performance di�erences among multi-level implementationsare relatively small.For wide grids, the expected value of D is linear in n. All bucket implementations performsimilarly, although the implementations with fewer levels are a little faster. The number ofoverhead operations is comparable to the number of nodes.For random graphs, the expected value of D is linear in n logn, and the results are similarto those for wide grids.7.4 Hard and Easy ProblemsBucket implementations with more than one level perform similarly on problems discussed inprevious sections. Next we study problems designed to be hard or easy for an implementationwith a speci�c number of bucket levels.Recall that the graphs we use for these problems consist of the source connected to two pathswith an equal number of arcs. Suppose that the problem is designed for an implementation thatuses k bucket levels. The path arcs have the same length equal to the number p of buckets at the25

0.01

0.1

1

10

100

1000

10000

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of slong_ceqn data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.40 s 1.43 s 6.36 s 19.07 s 76.01 s 357.92 s 1432.18 sempty 1202520 4781164 21511738 68626877 274515736 1236191488 1517531420expanded 0 0 0 0 0 0 0moved 10669 21367 42783 85489 170931 341989 6838172 time 0.12 s 0.25 s 0.50 s 1.13 s 2.29 s 5.17 s 10.13 sempty 101272 241520 502656 1538746 3015827 8116176 14061592expanded 8046 16184 32524 65042 130387 261201 523123moved 10603 21277 42672 85263 170614 341543 6832783 time 0.12 s 0.25 s 0.51 s 1.07 s 2.17 s 5.05 s 10.31 sempty 28832 67496 235616 530607 1080725 4102953 8562016expanded 15281 31611 61862 125867 256803 510723 1030301moved 10228 20860 41247 83222 168511 335874 6754304 time 0.12 s 0.26 s 0.55 s 1.08 s 2.17 s 4.51 s 9.35 sempty 15550 28375 60158 173225 406687 923431 2168228expanded 20962 44972 94433 178985 357281 751631 1536325moved 9818 19953 41237 80015 159067 327811 667911h time 0.08 s 0.17 s 0.34 s 0.68 s 2.03 s 2.76 s 5.52 smoved 10669 21367 42783 85488 170930 341989 683817Table 15: The performance on long grids as the grid length and the maximum arc length growtogether. C = x. 26

0.01

0.1

1

10

100

1000

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of slong_ceqn10 data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.10 s 0.27 s 0.83 s 2.80 s 10.28 s 38.70 s 151.84 sempty 126164 517213 2104235 8440398 33868207 135703564 544664734expanded 0 0 0 0 0 0 0moved 10663 21363 42775 85483 170926 341985 6838152 time 0.09 s 0.20 s 0.42 s 0.93 s 1.77 s 4.07 s 11.38 sempty 31384 132799 213999 852984 1207835 4541666 6412881expanded 7890 15793 32180 64354 129860 259733 521876moved 10527 21086 42506 84928 170376 340865 6826833 time 0.10 s 0.22 s 0.45 s 0.92 s 1.93 s 3.93 s 8.55 sempty 13026 27711 63947 218912 540698 1080983 4409066expanded 14219 30420 63076 121990 252659 514540 1011132moved 9928 20432 41764 81752 166783 337574 6671914 time 0.12 s 0.25 s 0.52 s 1.01 s 2.08 s 4.32 s 8.88 sempty 6842 13853 27467 128023 227402 459851 1043327expanded 20470 44465 93237 166814 358514 748654 1533453moved 9702 19827 40910 78129 158962 326977 667128h time 0.08 s 0.17 s 0.34 s 0.70 s 1.37 s 2.76 s 5.52 smoved 10663 21362 42775 85482 170927 341986 683813Table 16: The performance on long grids as the grid length and the maximum arc length growtogether. C = x=10. 27

0.01

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of swide_ceqn data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.11 s 0.22 s 0.52 s 1.07 s 2.29 s 4.94 s 10.22 sempty 45690 97796 215440 340159 695868 1618779 3262258expanded 0 0 0 0 0 0 0moved 10743 21489 42889 85794 171696 341492 6828842 time 0.10 s 0.23 s 0.52 s 1.13 s 2.45 s 5.30 s 11.20 sempty 35036 73094 171475 281937 572086 1366719 2741423expanded 8033 16179 32519 65039 130364 261133 523078moved 10675 21398 42770 85561 171358 341029 6823503 time 0.11 s 0.25 s 0.56 s 1.20 s 2.63 s 5.77 s 12.32 sempty 22372 44881 133782 214406 429484 1118349 2264334expanded 15215 31558 61725 125622 256586 510218 1029673moved 10294 20984 41304 83467 169226 335315 6745134 time 0.12 s 0.27 s 0.61 s 1.29 s 2.79 s 6.24 s 13.75 sempty 12798 25572 54125 149542 325912 715430 1432781expanded 20746 44784 94291 178066 355332 750138 1534999moved 9860 20035 41293 80178 159545 327257 667021h time 0.13 s 0.32 s 0.80 s 2.01 s 4.93 s 12.24 s 28.69 smoved 10744 21489 42889 85794 171697 341492 682884Table 17: The performance on wide grids as the grid width and the maximum arc length growtogether. C = y. 28

0.01

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of swide_ceqn10 data set

1 level
2 level
3 level
4 level

heap

k nodes 8193 16385 32769 65537 131073 262145 5242891 time 0.08 s 0.18 s 0.40 s 0.90 s 2.02 s 4.39 s 9.41 sempty 1954 4208 8418 17375 36746 78160 163252expanded 0 0 0 0 0 0 0moved 10738 21481 42883 85788 171689 341487 6828792 time 0.08 s 0.20 s 0.47 s 1.02 s 2.28 s 4.98 s 10.56 sempty 1283 2818 5673 12607 25433 57081 113240expanded 7875 15751 32143 64308 129828 259649 521777moved 10612 21212 42608 85221 171099 340339 6817573 time 0.11 s 0.22 s 0.52 s 1.13 s 2.49 s 5.48 s 11.59 sempty 1055 2072 4151 10149 20455 42051 95572expanded 14103 30273 62983 121562 252227 514202 1009685moved 9972 20525 41818 81990 167479 337047 6663194 time 0.11 s 0.26 s 0.57 s 1.30 s 2.69 s 5.84 s 12.43 sempty 785 1516 3057 8432 16963 34765 69667expanded 20249 44193 92997 165155 356820 747187 1531935moved 9766 19894 40967 78465 159408 326432 666258h time 0.13 s 0.32 s 0.81 s 2.05 s 5.01 s 12.18 s 28.40 smoved 10737 21483 42884 85788 171689 341487 682879Table 18: The performance on wide grids as the grid width and the maximum arc length growtogether. C = y=10. 29

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of rand_ceqn data set

1 level
2 level
3 level
4 level

heap

k nodes 8192 16384 32768 65536 131072 262144 5242881 time 0.13 s 0.30 s 0.67 s 1.42 s 2.97 s 6.68 s 12.70 sempty 31772 68466 146869 310302 638538 1343418 3155034expanded 0 0 0 0 0 0 0moved 10940 21882 43883 87656 175354 350771 7017672 time 0.13 s 0.31 s 0.70 s 1.49 s 3.15 s 6.46 s 13.55 sempty 13452 31866 64619 150381 299076 682778 1366776expanded 8065 16124 32496 65001 130534 261073 523236moved 10872 21745 43748 87372 175083 350237 7012213 time 0.13 s 0.34 s 0.74 s 1.62 s 3.42 s 7.05 s 14.70 sempty 8180 16319 43217 86128 171769 426854 854375expanded 15400 31739 61633 126959 257958 508030 1031856moved 10498 21372 42096 85655 173253 342807 6933244 time 0.15 s 0.37 s 0.80 s 1.83 s 3.59 s 7.62 s 15.67 sempty 5670 11252 22556 65347 130828 260415 521462expanded 21303 45372 94179 171629 364060 754591 1539446moved 9973 20396 42080 79929 163556 336303 685667h time 0.21 s 0.58 s 1.40 s 3.25 s 7.61 s 16.97 s 37.48 smoved 10940 21881 43883 87656 175354 350771 701766Table 19: The performance on random graphs as the grid width and the maximum arc lengthgrow together. C = y. 30

0.1

1

10

100

1000 10000 100000 1e+06

t
i
m
e

nodes

Comparison of rand_ceqn10 data set

1 level
2 level
3 level
4 level

heap

k nodes 8192 16384 32768 65536 131072 262144 5242881 time 0.13 s 0.29 s 0.64 s 1.39 s 3.58 s 6.06 s 12.72 sempty 2097 4576 9881 22076 44989 100776 245506expanded 0 0 0 0 0 0 0moved 10927 21869 43878 87644 175342 350759 7017582 time 0.13 s 0.31 s 0.71 s 1.49 s 3.13 s 6.49 s 13.39 sempty 681 1819 3657 9211 18745 44764 91157expanded 7882 15748 32126 64241 129761 259524 521637moved 10776 21548 43540 86969 174679 349428 7003823 time 0.19 s 0.34 s 0.75 s 1.59 s 3.35 s 7.00 s 14.45 sempty 448 906 1820 5445 10742 21384 58362expanded 14124 30297 62888 121365 251878 513714 1008071moved 10100 20788 42671 83337 170474 345574 6821814 time 0.15 s 0.37 s 0.82 s 1.70 s 3.51 s 7.33 s 15.27 sempty 275 533 1087 3659 7254 14408 29163expanded 20383 44272 92933 165955 356957 746071 1530201moved 9896 20149 41684 79647 161881 333472 682081h time 0.24 s 0.63 s 1.42 s 3.32 s 7.41 s 16.49 s 36.87 smoved 10928 21870 43878 87644 175344 350758 701756Table 20: The performance on random graphs as the grid width and the maximum arc lengthgrow together. C = y=10. 31

0.1

1

10

100

100 1000 10000 100000 1e+06 1e+07

t
i
m
e

MaxArcLen

Comparison of hard_2 data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 100 1000 10000 100000 1000000 100000001 time 0.98 s 1.23 s 2.95 s 9.78 s 20.27 sempty 917488 1966048 8257408 33422848 66976768expanded 0 0 0 0 0moved 131072 131072 131072 131072 1310722 time 1.27 s 1.53 s 3.10 s 9.37 s 17.75 s 68.68 sempty 917488 1966048 8257408 33422848 66976768 268300288expanded 131069 131069 131069 131069 131069 131069moved 131072 131072 131072 131072 131072 1310723 time 1.22 s 1.18 s 1.20 s 1.32 s 1.30 s 1.52 sempty 3 7 131085 393209 393209 917489expanded 163837 147453 147453 147453 139261 139261moved 131072 131072 131072 131072 131072 1310724 time 1.53 s 1.35 s 1.43 s 1.63 s 2.18 s 2.97 sempty 131069 131069 393209 917489 1966049 4063169expanded 294906 204796 200700 198652 266234 264186moved 131072 131072 131072 131072 131072 131072h time 0.68 s 0.70 s 0.67 s 0.68 s 0.68 s 0.68 smoved 131072 131072 131072 131072 131072 131072Table 21: Hard problems for the 2-level implementation. n = 131072.32

0.1

1

10

100 1000 10000 100000 1e+06 1e+07

t
i
m
e

MaxArcLen

Comparison of hard_3 data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 100 1000 10000 100000 1000000 100000001 time 0.85 s 0.97 s 1.28 s 1.88 s 3.45 sempty 393208 917488 1966048 4063168 8257408expanded 0 0 0 0 0moved 131072 131072 131072 131072 1310722 time 1.00 s 1.12 s 1.28 s 1.83 s 2.85 s 7.43 sempty 393208 917488 1966048 4063168 8257408 16645888expanded 65535 65535 32767 16383 16383 8191moved 131072 131072 131072 131072 131072 1310723 time 1.15 s 1.28 s 1.53 s 2.07 s 3.12 s 5.18 sempty 393208 917488 1966048 4063168 8257408 16645888expanded 147452 139260 135164 133116 132092 131580moved 131072 131072 131072 131072 131072 1310724 time 1.32 s 1.22 s 1.18 s 1.17 s 1.23 s 1.22 sempty 2 6 14 30 131069 131069expanded 212988 167932 148476 139516 147964 139388moved 131072 131072 131072 131072 131072 131072h time 0.68 s 0.68 s 0.68 s 0.67 s 0.70 s 0.70 smoved 131072 131072 131072 131072 131072 131072Table 22: Hard problems for the 3-level implementation. n = 131072.33

lowest level. The arcs out of the source have di�erent length. For hard problems, this length is0 and p� 1; for easy problems, the length is 0 and 1. In the case of hard problems, the k-levelalgorithm never examines an empty bucket not at the lowest level, and on the lowest level thealgorithm always examines all buckets even though only the �rst and the last ones are occupied.In the case of easy problems, the algorithm examines the �rst two buckets at the lowest leveland skips the rest because of the end cuto� heuristic.One expects hard problems to take a long time because the k-level implementation performsp� 2 empty bucket operation for every two node scans. Recall that in our implementations thenumber of buckets at each level is a power of two. As a result, a multi-level implementation withless than k levels is also forced to examine all lowest level buckets, and the number of nodes inthe lowest level buckets at any point of the execution is small. Therefore a problem designed tobe hard for the k-level implementation is hard for implementations with fewer levels as well.Easy problems take relatively little time because no empty buckets are examined by thecorresponding implementation.Tables 21 and 22 give data for problem families hard-2 and hard-3 designed to be hardfor 2- and 3-level implementations, respectively. The results are as expected. For the hard-2family and large values of C, the number of empty bucket operations is much bigger for 2-level implementations. The 1-level implementation performs equally poorly (also, there was notenough memory for the largest problem instances). For the hard-3 family and large values ofC, the number of empty bucket operations is much bigger for 1-, 2-, and 3-level implementations.Table 23 gives data for the easy-2 problem family designed to be easy for the 2-level imple-mentation. This family is unusual because the number of empty bucket operations for multi-levelimplementations increases with the number of levels. The performance of the 2-level implement-ation is independent of C while the 3- and 4-level implementations run slower as C increases.Even for the largest value of C, however, the performance di�erence is not very large.7.5 Heap Implementation PerformanceThe relative performance of the k-ary heap implementation depends mostly on the graph type.On long grids, the heap contains very few nodes throughout the computation, heap operationsare fast, and the heap implementation usually outperforms the multi-level bucket implementa-tions. If C is small, however, overhead of the multi-level bucket implementations is small andthey perform similarly to the heap implementation.On the hard and easy problems the k-ary heap implementation contains at most two nodes34

0.1

1

10

100

100 1000 10000 100000 1e+06 1e+07

t
i
m
e

MaxArcLen

Comparison of easy_2 data set

1 level
2 level
3 level
4 level

heap

k MaxArcLen 100 1000 10000 100000 1000000 100000001 time 0.93 s 1.20 s 2.95 s 9.73 s 20.32 sempty 802801 1904616 8192897 33292289 66911361expanded 0 0 0 0 0moved 131072 131072 131072 131072 1310722 time 1.03 s 4.05 s 1.03 s 1.05 s 1.05 s 1.05 sempty 2 6 14 158 574 1662expanded 131069 131069 131069 131069 131069 131069moved 131072 131072 131072 131072 131072 1310723 time 1.13 s 1.08 s 1.12 s 1.22 s 1.22 s 1.37 sempty 49153 57349 172043 401400 430072 921584expanded 163836 147452 147452 147452 139260 139260moved 131072 131072 131072 131072 131072 1310724 time 1.38 s 1.23 s 1.25 s 1.37 s 1.33 s 1.32 sempty 0 98301 229368 491509 17 25expanded 294905 204795 200699 198651 266233 264185moved 131072 131072 131072 131072 131072 131072h time 0.68 s 0.68 s 0.68 s 0.68 s 0.70 s 0.68 smoved 131072 131072 131072 131072 131072 131072Table 23: Easy problems for the 2-level implementation. Here n = 131072.35

on the heap at any point during the execution except at the beginning of the computation, whenthe heap contains at most four nodes. Thus the heap operation overhead is extremely small andthe heap implementation is very fast on these problems.On wide grid and random problem families, the heap contains relatively many nodes. Onsome of these problem families the multi-level bucket implementations have relatively largeoverhead for small n because C is large compared to n. Thus some of these implementationssometimes lose to the heap implementation for small n. For large n, however, the bucket imple-mentations are always faster.8 ConclusionsThe previous study [5] concluded that the 2-level implementation often signi�cantly outperforms,and never signi�cantly underperforms, the 1-level implementation. The goal of our study wasto evaluate the e�ect of the number of levels on performance. We studied the 1-, 2-, 3-, and4-level implementations on a large collection of problem families and presented and explainedthe results for the most interesting subset of these.Our study con�rms that the 1-level implementation is not robust and should not be usedunless the network depth D is not large compared to the number of nodes n.The multi-level implementations perform consistently on most problem classes. The onlyexceptions in our study are the long-large problems and the problems discussed in Section7.4. Our results suggests that these implementations should exhibit consistent performance inmost practical situations. In Section 7.4 we studied classes of problems designed to be hard oreasy for certain implementations. The results show that it is possible to make the multi-levelimplementations perform poorly. No multi-level implementation dominates the others, but the2-level implementation is less robust than the 3 and 4-level implementations. This is because the2-level implementation loses by larger margins than it wins by. The 3-level implementation is lessrobust than the 4-level implementation. However, the 2-level implementation is competitive withthe 3- and 4-level implementations unless C is very large. The 3- and 4-level implementationsperformed similarly except on the families speci�cally designed to di�erentiate them (see Section7.4).Note that multi-level implementations can handle huge arc lengths. For example, if C = 232,the number of buckets used by the 2-, 3-, and 4-level implementations is 217, 3 � 211, and 210,respectively. Even for 2-level implementations, the buckets require 128K words of memory, a36

small amount for modern computers. Note that C should be much smaller than 232 for mostapplications, and 232 is a natural bound for 32 bit computers. For C = 264, a natural bound forthe 64 bit computers, the numbers change to 233, 3 � 222, and 218. The �rst number shows thatthe 2-level implementation requires too much memory. The 3-level implementation requires is12M words for buckets in this case; too big for many of today's (but not tomorrow's) computers.The 4-level implementation requires only 256K words.The 2-level bucket implementation has been suggested as a robust choice for shortest pathproblems with nonnegative arc length [5]. Our results con�rm this conclusion and show that 3-and 4-level bucket implementations are even more robust choices.Multi-level bucket data structure may be useful in other applications. One promissing ap-plication is the simulation event set problem, for which the calendar queue data structure, insome respects similar to the 2-level bucket data structure, appears to work very well in practice[3].References[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for the ShortestPath Problem. J. Assoc. Comput. Mach., 37(2):213{223, April 1990.[2] R. E. Bellman. On a Routing Problem. Quart. Appl. Math., 16:87{90, 1958.[3] R. Brown. CalandarQueues: A FastO(1) PriorityQueue Implementation for the SimulationEvent Set Problem. Comm. ACM, 31:1220{1227, 1988.[4] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory andExperimental Evaluation. Technical Report STAN-CS-93-1480, Department of ComputerScience, Stanford University, 1993.[5] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory andExperimental Evaluation. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms,pages 516{525, 1994.[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, MA, 1990.[7] R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM,12:632{633, 1969. 37

[8] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numer. Math.,1:269{271, 1959.[9] E. A. Dinic. Economical algorithms for �nding shortest paths in a network. In Yu.S. Popkovand B.L. Shmulyian, editors, Transportation Modeling Systems, pages 36{44. Institute forSystem Studies, Moscow, 1978. In Russian.[10] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,NJ, 1962.[11] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved NetworkOptimization Algorithms. J. Assoc. Comput. Mach., 34:596{615, 1987.[12] M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum SpanningTrees and Shortest Paths. J. Comp. and Syst. Sci., 48:533{551, 1994.[13] G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3{79,1988.[14] B. Ju. Levit and B. N. Livshits. Neleneinye Setevye Transportnye Zadachi. Transport,Moscow, 1972. In Russian.[15] E. F. Moore. The Shortest Path Through a Maze. In Proc. of the Int. Symp. on the Theoryof Switching, pages 285{292. Harvard University Press, 1959.[16] U. Pape. Implementation and E�ciency of Moore Algorithms for the Shortest Root Prob-lem. Math. Prog., 7:212{222, 1974.[17] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and AppliedMathematics, Philadelphia, PA, 1983.[18] R. A. Wagner. A shortest path algorithm for edge-sparse graphs. J. Assoc. Comput. Mach.,23:50{57, 1976.
38

